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Abstract-A general methodology for deriving explicit element stiffness matrices in hybrid stress 
formulations is extended to incorporate nonconstant material properties over the element domain for 
nonlinear elastic analysis. The technique utilizes special stress field transformations to simplify the stiffness 
definition together with an assumed variation of material properties using isoparametric interpolation 
functions. The developed technique eliminates the need for numerical integration and matrix inversions, 
resulting in a substantial increase in computation efficiency. The methodology is demonstrated with the 
Pian-Sumihara plane quadrilateral element. Published by Elsevier Science Ltd 

INTRODUCHON 

The study of hybrid-mixed element formulations has 

generated much research into minimizing the 
computational cost to make such elements competi- 
tive with displacement-based elements. In hybrid 
formulations, many insightful treatments have been 
utilized to reduce computations, the most notable 
have been simplifying approximations made to the 
flexibility or complementary energy matrix inherent 
to the technique [l-3]. The hybrid stress method has 
many desirable features which, aside from superior 
performance over similar displacement-based el- 
ements, include the inherent expressibility of most 
hybrid element constituent matrices in algebraic 
form. This feature is due to the absence of the inverse 
Jacobian determinant in the stiffness definition 
which, in displacement-based continuum elements 
under general distortion, result in integrands 
involving rational functions which are only approxi- 
mated through numerical quadrature. A method has 
recently been developed by the author for simplifying 
the definition of hybrid element stiffness matrices 
through special transformations of assumed stress 
fields [4, 51. These transformations effect the removal 
of the complementary energy matrix, thus permitting 
an explicit evaluation of stiffness coefficients to be 
accomplished. The resulting algebraic expressions 
allow the generation of element stiffness matrices 
requiring a fraction of the computational cost of a 
numerical evaluation. Of interest is the extension to 
nonlinear elastic problems which, within the frame- 
work of finite element solution methods, usually 
require computationally intensive, incremental or 
iterative solution procedures. To reduce the cost of 

reforming global stiffnesses during update in, for 
example, a full or modified Newton-Raphson 
procedure, the current study aims to incorporate 
nonconstant material properties in the method of 
Ref. [4]. As an initial effort, an explicit formulation 
will be derived for the four-node Pian-Sumihara 
hybrid quadrilateral element [6]. 

VARIATIONAL BASIS 

As detailed in Ref. [6], the Hellinger-Reissner 
functional is utilized to define the structure of the 
element matrices. This functional is given by 

~-IR = 
I 

[( - l/2)oTSr7 + aT( du, (1) 

where c is the assumed stress field, S is the material 
compliance matrix, u is the assumed displacement 
fields and L is the differential operator relating strains 
to displacements. 

The assumed stresses are represented by 

cr = P/3, (2) 

where P is a matrix of polynomial terms and /I is a 
vector of undetermined expansion coefficients. In- 
compatible displacement fields are introduced such 
that the displacement field is assumed over the 
element domain as 

u = u, + u; = Nq + MA, (3) 

529 



530 E. Saether 

where N and M are compatible and incompatible 
displacement shape functions, respectively, q are 
nodal displacements and 1 are Lagrange multipliers 
which enforce internal constraints. The resulting 
energy functional is given by 

b = 
I 

[( - 1/2)aTSa + oT(Lu,) - (LTa)T~;] dv. 

(4) 

In the form of eqn (4), the incompatible displace- 
ments act to variationally enforce the field equi- 
librium conditions. These variational constraints are 
applied a priori to the assumed stress modes which 
condense the influence of the incompatible modes 
into the element formulation. 

Substituting eqns (2) and (3) into eqn (4) and 
taking variations with respect to /I and q result in an 
expression for the element stiffness matrix given by 

6- 

5 

Fig. 1. Evaluation points used for material interpolation. 

The inverse square root of the compliance matrix 
is obtained through a standard spectral decompo- 
sition [7] using the material stiffness matrix, C, given 

by 

S-l.2 = Cl” = Q/,MQ’, 

K = GTH-‘G, (5) 

where 

H = 
s 

P’SP dv, (6) 
< 

(7) 

and B is the strain-displacement matrix. In the above 
formulation, the a priori condensation of the 
incompatible displacement modes results in an H 
matrix which is fully populated and has hitherto 
required the inversion of a full matrix of order 
dim@). 

NONLINEAR ELEMENT STIFFNESS DEFINITION 

The procedure developed in Ref. [4] for simplifying 
eqn (5) is extended to account for nonconstant 
material properties. The method utilizes a sequence of 
permissible transformations of assumed stress fields 
to simplify the stiffness definition, together with an 
assumed order of interpolation of material properties 
over the element domain. The assumed stresses are 
first transformed using a symmetric matrix denoted 
by D and introduced as 

P = IP = (DD-‘)P = D(D-‘P) = DP, (8) 

where the D matrix is defined as 

D = S-‘/z. (9) + A& + A,t2q + AsO?, (12) 

where Q is a unitary matrix composed of normalized 
system eigenvectors and A is a diagonal matrix of 
associated eigenvalues. Explicit expressions for A and 
Q for an orthotropic material are presented in 
Appendix I. 

The extension to nonconstant material properties 
requires that the compliance matrix be interpolated 
over the element domain. For the quadrilateral plane 
element under study a bilinear isoparametric field is 
sufficient for interpolating compliance properties; 
however, the derived D matrix is a nonlinear function 
of S thus requiring a higher order interpolation. A 
quadratic isoparametric field is adopted in which the 
material matrices are computed at the stress recovery 
or material evolution points depicted in Fig. 1. Thus, 
at arbitrary points over the element domain D = S-“’ 
and the interpolation results in the relationship S = S 
being strictly valid at the recovery points and 
approximate elsewhere. The accuracy of this approxi- 
mation is discussed later in Remark I. The 
interpolation is given by 

(11) 

where Q represents the material D and D-’ matrices 
computed at the ith stress recovery point and N, are 
the associated quadratic-order isoparametric shape 
functions. Interpolation of the material matrices over 
the element domain may be expressed as 
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where the constant matrices, A,, are given by 

(13) 

Substitution of eqn (8) into eqn (6) yields the In the definition of P, the D-l matrix is 
flexibility matrix as interpolated according to eqn (12) and carried into 

the subsequent orthonormalization of assumed stress 

I I 
H= 

1.T 

modes. For the present study, however, a simplifica- 

[]JIP’D%DP] d< dtj, (14) tion is adopted wherein the D matrix is interpolated 
-I -, according to eqn (12) while its inverse is obtained 

from an area average obtained by integrating over the 

where, from the definition of D and the symmetry of element domain. This operation is not required, but 

both S and D we obtain is utilized in the present study. to simplify the 
expressions for the orthonormalized stress modes, 

DTSD = s-“Ss-‘2 = Ss-I z 1, (15) P*, while maintaining an adequate approximation for 
the material properties. The inverse is thus defined as 

The approximation rapidly approaches an identity as 
the interpolation order of D increases and as the D-l= 1 ’ HI ’ 1 

-I 
variation of material properties over the element 4 D(5, 9) d5 drl 1 (20) 

diminishes. The flexibility matrix is thereby closely 
-I -I 

approximated by 
and the relationship 

I I 

HZ ss []J]PTP] dt dr/. (16) 
-1 -1 

A second field transformation uses eqn (16) to define 
a weighted inner product for use in a Gram-Schmidt 
procedure to generate an orthonormal spanning set 
of stress modes, P*. This modal set is formed as a 
special linear combination of the modes present in P 
and constitutes an alternative basis set which spans 
the original stress space. The weighted inner product 
is therefore defined as 

(17) 

is satisfied in an integral sense for nonconstant 
material properties and pointwise for constant 
properties over the element domain. Substitution of 
P* into eqn (16) yields by definition 

I I 

H= ss []J]P*TP*] d< dn = I. (22) 
-I -I 

The new basis for the element stress field is given 

by 

P = DP*, (23) 

The linear combination yielding a sequence of and the expression for the element stiffness matrix 

orthogonal stress modes is given by reduces to 

P, i= 1, K = GTG. (24) 
v, = ,-I (18) 

Ij,- 1 (P:,F,)PT i> 1, Separating out the Jacobian determinant from the 
,=I isoparametric strains as 

which are normalized to form basis vectors, P?, as 

P,* = (V,, V,)-‘Zv,. (19) 
(25) 
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The tensorial stress field is transformed to physical 
or Cartesian coordinates using Jacobians computed 
at the element centroid as 

Or’ = (Jo)! (Jo)jr”. (28) 

X 
t 

c 
Performing the initial transformation of stresses 

5 
given by eqn (8) results in the Cartesian stress field 
given by 

(%,Yz) 
e = [(T, , n, , 7r, I’ = P/J, (29) 

Fig. 2. Quadrilateral element configuration. 
where 

and substituting eqns (23) and (25) into eqn (7), the 
G matrix definition becomes 

1 I 

G= ss [P*TDB*] d< dij. (26) 
-I -I 

The absence of the Jacobian determinant in the 
denominator permits a direct derivation of algebraic 
expressions for the G matrix coefficients which 
incorporate a nonconstant field of material properties 
over the element domain. The explicit form of the 
element stiffness matrix is then obtained from 
eqn (24). 

NONLINEAR PIAN-SUMIHARA ELEMENT 

The configuration of the Pian-Sumihara element 
and node numbering are depicted in Fig. 2. The 
displacement functions U, are given by 

and the coefficients c,, are obtained from the product 
of D-’ and a transformation matrix relating tensorial 
stresses to Cartesian components. This relationship is 
given by 

[c,,] = D-‘T = 

(27) 

where 

The geometric parameters a, and 6, are obtained from 
the mapping between physical and natural coordi- 
nates given by 

1s detailed in Ref. [6], stresses are defined in natural 
The weighted orthonormalized stress modes are 
obtained as 

or tensorial coordinates and incompatible displace- 
ment modes are introduced to complete the quadratic 
order of the assumed isoparametric displacement 
field. These modes are condensed a priori into the 
element formulation through constraint conditions 
on the assumed stress modes. 

0 pi+g+p‘a pxq+pr?5+pf, 
0 p$55+p4*6 ps$rl+ps*s5+pT6 9 

0 p3? p85+p‘z pXq+pJ5+ps% 1 
(32) 
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where the stress mode coefficients, p$ , are presented 
in Appendix II. 

Given the following constants arising from the 
regular structure of the strain modes 

cl, = b~zl - blz$, e4, = a,zi + azzi, 

e2, = b,z', - b,z:, es, = a,zi - aci, 

e,, = bzz\ - b,zi, es, = a3zi - zzz{ 

where j 4 z!_ z: 
1 -1 -1 1 m 2 1 -1 -1 

(33) 
3 1 1 1 

4 -1 1 -1 

and the general form for each stress mode given by 

p* = PSI1 +pi25 fPz3 4 1 &ail + pd + P’6 ’ (34) 

piirl + p&r + PI9 

the integration of eqn (26) yields explicit expressions 
for the components of the G matrix. The expressions 
are based on the most general form of orthonormal- 
ized stress modes in which most terms are zero for the 
simpler modes and the constants (d,b are elements of 
the D matrix computed at the kth evaluation point. 
In addition, for constant material properties, if all 
(d,,), terms are discarded for k > 1, the resulting 
expressions reduce to an explicit form of the 
linear-elastic Pian-Sumihara element. The com- 
ponents g,, with i = 1,2, 3, . . , 5 and j = 1, 2, 3,4 
are given by 

gl.z/ - I = (PX {(e,, [(d, ,), + 3(d,, I31 + e,, [(d,, j4 

+ 3(d11)1 + 9(d11)5/5] + (d11)6ez,} 

f 3(d11), + 9(d11)4/5] + (dl1)~e3,} 

+ PJ {(ez, I(dlb )8 + 3(d1 I ):I + e3, [(d, I 17 

+ 3(dll)J + 3e#ll)5 + (c&,)~ + 3(d,,),]) 

+ Pf {(el, K&)7 + 3(d&] + e3,[(d& 

+ 3(&h + 9(&h/5] + e?,(d1Z)6} 

+ PX {(el,[(d& + 3(&M + e2,[(dlz)s 

+ 3(&h + 9(&)4/5] + e,,(d,l)6} 

+ PJ{(e3,Kd12)7 + 3(&)31 + ez,[(&h 

+ 3(Wl + 3el,[(d12)5 + (d& + 3(&),]} 

+ PIT I@+ [(A)7 + 3(&h] + e6, [(c&,)~ 

+ 3(d33)1 + 9(&h/51 + e,(d33)6} 

+ PB{(e+[(d3~)8 + 3(&M + e5,[(dz,h 

+ 3(&h + 9(&)4/5] + e6,(dj3)6} 

+ PI8 {(+M& + 3(&):] + e6, [(d,,), 

+ 3(&)31 + 3ee[(&), 

+ VU), + 3(&),]})/9, 

gi.2, = W i(e4,[(&)7 + 3(d~)~] + e6,[(d12)4+ 3(&), 

+ 9(d11)5/5] + (&)6e5,} 

+ PIT {(e4,[(&)8 + 3(d1~)~] + eh [(&h 

+ 3(dl2)1 + 9(&)4/5] + (&)&,} 

+ PIT {(e,K42)8 + 3(d12)2] + es,[(&), 

+ 3(dt~)31 + 3e4, K&), + (d& + 3(&), ]} 

+ PII {(e+[(d& + 3(&),] + es, [(d& 

+ 3(&)1 + 9(&h/5] + es,(dZ2)6} 

+ Pt {(e4,[(42h + 3(&)J + e5,[(d22)5 

+ 3(d22)1 + 9(&)4/5] + e6,(d22)6} 

+ Pb {(e, [Cd2217 + 3(&),] + es,[(d2& 

+ 3(d~)21 + 3e+[(d& + (do), + 3(&),]} 

+ PI? ihW33h + 3(&h] + e3, [(c&,)~ 

Name 

Mxmul 
Mxadd 
Invers 
State 

Table 1. Subroutine procedures 

Description Name Description 

Matrix multiplication Gmatrx Explicit computation of G matrix 
Matrix addition Orthop Computation of orthonormal stress modes 
Matrix inversion Spectrl Spectral decomposition of S matrix 
Static condensation Main Main program + minor subroutines 
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Table 2. Computational profiles of the nonlinear Pian-Sumihara (PS) element 

% Self 
time (s) 

32.76 16.55 
30.09 15.20 
21.71 10.97 
3.17 1.60 

12.27 6.20 

PS-explicit 

Cumulative 
(s) 

16.55 
31.75 
42.72 
44.32 
50.52 

Procedure 
name 

Spectrl 
Mxmul 
Gmatrx 
Orthop 
Main 

% 
time 

75.46 
9.26 
6.50 
8.78 

PS-numerical 

Self Cumulative Procedure 
(s) (s) name 

109.09 109.09 Mxmul 
13.38 122.47 Mxadd 
9.39 131.86 Invers 

12.71 144.57 Main 

+ 3V33h + 9(d33)4/51 + e3,(d3316} 

+ pS {(a, Kd33h + 3@33)21 + 6, Kd33)7 

+ 3@33)31 + 3ebKd33h 

+ @33)4 + 3@33)11})/9. (35). 

NUMERICAL STUDIES 

Computer codes were generated to assess element 
computational characteristics. A description of the 
procedures used in the codes are presented in Table 1. 
The designation “main” combines the operations 
within the main program together with various minor 
subroutines which contribute insignificant compu- 
tational cost. No optimization was attempted in 
terms of code preparation or CPU processing options 
such as vectorization or concurrency. The codes were 
run on a Hewlett Packard Apollo 400 series 
workstation in a Unix environment. The standard 
Unix profiler Gprof was used to characterize the time 
spent in performing various operations. Table 2 
presents computational profiles and computer run- 
times comparing the explicit and numerical gener- 
ation of stiffness matrices in the nonlinear 
Pian-Sumihara quadrilateral element. An additional 
comparison is made to a four-node displacement- 
based element incorporating incompatible displace- 
ment modes which is presented in Table 3. The 
incompatible modes are based on quadratic functions 
and modified using a technique presented in Ref. [8] 
to identically satisfy the strong form of the patch test 
for incompatible elements. A 2nd-order Gaussian 
quadrature rule was used for all numerical evalu- 
ations in generating computational profiles. In 
generating the computational profiles, 10,000 element 
stifiness matrices were processed. 

The computational profiles quantify the different 
characteristics of the explicit and numerical versions 
of nonlinear Pian-Sumihara element. In the explicit 
version, the eight spectral decompositions of the 
compliance matrix consume the greatest amount of 
computational cost (32.76%) while matrix multipli- 

cations constitute most of the computations in the 
numerical version (75.46%). The computational 
profile of the explicit version shows that the 
operations involved in forming the orthonormal 
stress modes is insignificant (3.17%) while the 
formation of the G matrix consumes 21.71% of the 
cost. The final evaluation of eqn (24), which is the 
only matrix operation performed in the explicit 
version, constitutes fully 30% of the cost in forming 
the element stiffness matrix. Comparing total cost, 
the explicit version requires only 34.95% of the 
processing time as the numerical evaluation and only 
22.48% of the cost required in the incompatible 
displacement-based formulation. While this rep- 
resents a significant reduction in processing cost, 
application of the developed methodology may be 
expected to show greater reductions in three-dimen- 
sional and higher-order hybrid element formulations. 
This issue is discussed in Remark II. 

A second demonstration is made to show the 
accuracy of the nonuniform material representation 
in the explicit formulation. Because the basic 
computational characteristics have been shown 
above, a cantilevered beam under plane stress is 
solved where the material properties are not a 
function of the stress-strain state, but instead vary 
along the length of the beam. Such a problem is 
uncommon, but serves to illustrate the representation 
of material property variation in the clearest manner. 
The beam was analyzed using a coarse model of five 
elements. Two different mesh configurations were 
used as shown in Fig. 3; a uniform mesh was adopted 
to assess optimum element performance and a 
nonuniform mesh was used to assess distortion 
sensitivity to the simplifications currently incorpor- 
ated in the explicit derivation. For simplicity, 
isotropic material properties were assumed with a 
linear variation of modulus as depicted in Fig. 4. 

Table 3. Computational profile of incompatible displace- 
ment-based element 

D-Based 

% Self Cumulative Procedure 
time (s) (s) name 

71.6 160.82 160.82 Mxmul 
13.0 29.18 190.00 Mxadd 
II.0 24.63 214.63 State 
4.4 IO.12 224.15 Main 
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Fig. 3. Cantilevered beam configurations: (a) uniform mesh; (b) distorted mesh. 

Table 4 depict solutions for the explicit and 
numerical hybrid element fo~ulations together with 
results using an incompatible displacement-based 
element. 

The above results show an excellent agreement 
between the explicit and numerical hybrid element 
formulations for both meshes; a small departure is 
seen in the tip deflection prediction in the explicit 
formulation using the irregular mesh due to the 
incorporated simplifications. The incompatible dis- 
placement-based element demonstrates good results 
for both stresses and displacements using a uniform 
mesh; however, in the distorted mesh, stress recovery 
is severely compromised. In general, the greater 
computational cost of the displacement-based el- 
ement makes it unappealing. 

REMARK I[ 

An important aspect of the above development 
involves the collocation error of the D matrix over the 
element domain using quadratic isoparametric shape 
functions. Because this matrix is computed as the 

Iy::I 

l&j@ .--- -. 1.1”. . ..__.-_..--_____ 

1 
0 5 10 -5 

Fig. 4. Assumed linear variation in Young’s modulus along 
beam length. 

square root of the material stiffness matrix, the 
individual components in D are interpolated to yield 
the approximate relation given above in eqn (15). A 
formal error estimate may be derived for arbitrary 
variation of material properties and order of 
collocation polynomials; however, a clearer ilius- 
tration may be given by assuming a specific variation 
in the compliance matrix components as a function 
of a single coordinate, thus simplifying the error 
analysis to a one-dimensional demonstration. A 
linear function is selected in which a parameter, 8, is 
used to set the magnitude of variation in the material 
component denoted by CO. The resulting square root 
distribution is given by 

f(5) = Ch!?[l + @(l + g)]““. 

The values of f(t) at the evaluation points along 
[E(- 1, 1) are depicted in Fig. 5. 

The quadratic isoparametric interpolation is given 

by 

p(5) = @((I + O)“? + $1 + 20)‘J]f 

+ f]l - 2(1 f @)’ z + (1 + 2s)“‘15z). 

An error measure for point evaluation may be given 

by 

Ep = if-v3 - P(5)l 
f(S) . 

A second error measure is associated with the 
difference between the integrated areas computed by 
the exact solution and the quadratic collocation. The 
integral of the exact dist~bution is given by 
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Table 4. Deflection of nonlinear cantilevered beam under end shear loading 

(a) Uniform mesh (b) Distorted mesh 
-___ 

Elements I’u GLlhi ~IlCI Elements I’” O,lhI 

PS-explicit -88.7 4045 3587 PS-explicit -86.1 4048 3728 
PS-numerical -89.1 4050 3600 PS-numerical -90. I 4047 3735 

D-based - 89.0 4050 3586 D-based -89.9 3276 3079 
Exact - 90.4 4043 3601 Exact -90.4 4043 3601 

’ F(5) = 
s -1 

f(l) d< = 6 C;“[(26’ + l)j’ - 11, 

while the integral of the collocated function is given 

by 

P(5) = s ~(5) d5 
-I 

= ;c;*q1 + 4(1 + 0)’ ? + (1 + 20)‘,‘]. 

An error measure for the integral evaluation may be 
given by 

E = M5) - p(t)1 
F(5) 

Table 5 details error measures at the points of 
maximum expected error and the integrated error 
between the two assumed functions. 

The above table indicates that the maximum point 
collocation error for a 40% variation in modulus 
(0 = 0.2) over the segment is just over 1%. At 
0 = 0.5, corresponding to a 100% variation in 
material properties, the point error increases to 
11.2%. However, even when the properties vary by a 
factor of 3 (0 = 1.0) over the segment, the integrated 
error, E,, is still small, on the order of 4.05%. 

REMARK 11 

With stresses assumed in natural coordinates, the 
procedure described herein may be applied directly. 
For higher-order elements, the approach of assuming 

I 
-1 1 * 5 

Fig. 5. Variation in material properties over segment. 

tensorial stresses with a contravariant transformation 
using centroidal Jacobians to obtain Cartesian 
stresses is inaccurate and necessitates a formulation 
based on stresses assumed a priori in Cartesian 
coordinates. For assumed Cartesian stress fields, a 
fully explicit derivation may become overly cumber- 
some and computationally disadvantageous. In such 
cases the basic methodology is applied, but numerical 
quadrature of the scalar integrals arising in the 
weighted inner product and computation of G-matrix 
components is advocated. In higher-order elements, 
the reduction in computational cost afforded by 
adapting the present methodology is expected to be 
significantly greater than that demonstrated for the 
four-node quadrilateral element due to the larger 
order of the constituent matrices. The computational 
savings result from eliminating the cost of forming 
and inverting the complementary energy matrix, H, 
and by replacing the numerical quadrature of 
large-order matrix products by the quadrature of a 
small set of scalar integrals. 

CONCLUSION 

The present effort has been aimed to enhance the 
computational efficiency of hybrid element formu- 
lations for nonlinear material analysis. The four-node 
Pian-Sumihara quadrilateral element was selected to 
illustrate methodology to derive explicit formulations 
accommodating nonconstant material properties. 
The derivation of an explicit element stiffness matrix 
has been shown to substantially reduce the compu- 
tational cost in nonlinear analysis. The developed 
methodology is completely generic and may be 
applied to any hybrid element formulation to reduce 
the computational cost in linear and nonlinear 
applications. In the application to higher-order 

element formulations, an assumption of Cartesian 
stresses leads most efficiently to a combination of 
numerical evaluation of the scalar integrals involved 
in the orthonormalization process and in the 
integration of various integrals required in determin- 
ing components of the G matrix. All other 
integrations may be performed analytically. The 
increase in efficiency demonstrated with a linear- 
order hybrid element is expected to be even more 
pronounced in higher-order element formulations 
due to the elimination of forming and inverting the 
complementary energy matrix and by replacing the 
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Table 5. Error measures for point and integral evaluation of material property 
interpolation 

0 &(5 = -f, Ep(5 = f, E, 

0.00 0.0 0.0 0.0 
0.01 2.287 x IO-” 2.262 x 10m6 5.005 x 10-b 
0.05 2.603 x 10m4 2.467 x lO-J 2.683 x 10m6 
0.1 1.862 x IO-’ 1.681 x lO-1 3.581 x lO-5 
0.2 I.211 x IO-’ 1.003 x IO-’ 4.109 X IO-4 
0.3 3.384 x IO-? 2.606 x IO-’ I.542 x IO-’ 
0.4 6.739 x IO-’ 4.871 x IO-? 3.710 x IO-’ 
0.5 I.120 x IOF 7.658 x IO-? 7.048 x IO-’ 
0.6 1.664 x IO-’ 1.083 x IO-’ I.158 x IO-’ 
0.7 2.292 x IO-’ 1.429 x IO-’ 1.728 x IO-’ 
0.8 2.993 x IO-’ 1.794 x IO@ 2.406 x 10-l 
0.9 3.754 x IO-’ 2.171 x IO-’ 3.184 x IO-’ 
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1.0 4.565 x IO-’ 2.555 x 10-l 4.051 x IO-’ 

numerical quadrature of large-order matrix products 
with the analytical/numerical integration of a 

relatively small set of scalar integrals. The application 
of the above methodology can be expected to find 
general application in hybrid and mixed element 
formulations and provide a significant reduction in 
computational cost in generating element stiffness 
matrices for linear and nonlinear analysis. 
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APPENDIX 1 

Spectral decomposition 

The spectral decomposition of an orthotropic material 
compliance matrix is given by 

where the Al? matrix is formed as a diagonal matrix of 
system eigenvalues given by 

and the eigenvalues may be computed as 

in which c,, are elements of the material stiffness matrix. The 
Q matrix is formed by the system eigenvectors as defined as 

where the eigenvectors are given by 

and normalized as 

N, = ($:@-,)-‘z, 

@i, = N,i,. 

APPENDIX II 

Orthonormal stress mode components 

The stress mode coefficients, p,T , are given by 

p0 = nl, pb = nlc\I, pa = -n4cl~1z/11, 

pd = n I . p8 = nJcll. p& = -n,cJ,E.?/ll, 

pJ = nl. p& = n4cx. pi = -n4c,l11/11. 

p.8 = n0. p$ = -n,c,b+, p;5 = -n&, 

ps*4 = n!c?:. ph = -n,c?,4, p& = -n&, 

p$ = ntfx, psS, = -n5njf$, p.% = -n& 



538 E. Saether 

in which where 

and normalizing factors are given by 

n, = 1;‘.2, 

tl4 = [(CL + c:1 + 1, )(A5 - z/n )I- -1 I ‘2 
) 

I 
-112 

+ 2i#JC,lO,12 + eZ&) 

The determinant of the Jacobian for two-dimensional 
transformations is given by 

Jo = a,bl - a261, J, = albz - a,bl, Jz = ajb2 -ah. 

The scalar integrals arising in the inner product to evaluate 
to 

I I 

a, = ss (JI d5 dq = 4J0, 
-I -I 

lJl( d5 dq = 4h/3, 

IJlrl d5 dg = 4h/3, 

[/Jl~’ d5 dq = 4J0/3, 

I I 

I.6 = ss [lJIq* d5 dq = 4J0/3 
-I -I 


